Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Supply Chain Networks with the Power of Graph Neural Networks (2501.06221v1)

Published 7 Jan 2025 in cs.LG, econ.GN, and q-fin.EC

Abstract: Graph Neural Networks (GNNs) have emerged as transformative tools for modeling complex relational data, offering unprecedented capabilities in tasks like forecasting and optimization. This study investigates the application of GNNs to demand forecasting within supply chain networks using the SupplyGraph dataset, a benchmark for graph-based supply chain analysis. By leveraging advanced GNN methodologies, we enhance the accuracy of forecasting models, uncover latent dependencies, and address temporal complexities inherent in supply chain operations. Comparative analyses demonstrate that GNN-based models significantly outperform traditional approaches, including Multilayer Perceptrons (MLPs) and Graph Convolutional Networks (GCNs), particularly in single-node demand forecasting tasks. The integration of graph representation learning with temporal data highlights GNNs' potential to revolutionize predictive capabilities for inventory management, production scheduling, and logistics optimization. This work underscores the pivotal role of forecasting in supply chain management and provides a robust framework for advancing research and applications in this domain.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.