Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Oriented discrepancy of Hamilton cycles and paths in digraphs (2501.05968v1)

Published 10 Jan 2025 in math.CO and cs.DM

Abstract: Erd{\H o}s (1963) initiated extensive graph discrepancy research on 2-edge-colored graphs. Gishboliner, Krivelevich, and Michaeli (2023) launched similar research on oriented graphs. They conjectured the following generalization of Dirac's theorem: If the minimum degree $\delta$ of an $n$-vertex oriented graph $G$ is greater or equal to $n/2$,then $G$ has a Hamilton oriented cycle with at least $\delta$ forward arcs. This conjecture was proved by Freschi and Lo (2024) who posed an open problem to extend their result to an Ore-type condition. We propose two conjectures for such extensions and prove some results which provide support to the conjectures. For forward arc maximization on Hamilton oriented cycles and paths in semicomplete multipartite digraphs and locally semicomplete digraphs, we obtain characterizations which lead to polynomial-time algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.