Papers
Topics
Authors
Recent
2000 character limit reached

On the basins of attraction of a one-dimensional family of root finding algorithms: from Newton to Traub

Published 8 Jan 2025 in math.NA, cs.NA, and math.DS | (2501.04450v1)

Abstract: In this paper we study the dynamics of damped Traub's methods $T_\delta$ when applied to polynomials. The family of damped Traub's methods consists of root finding algorithms which contain both Newton's ($\delta=0$) and Traub's method ($\delta=1$). Our goal is to obtain several topological properties of the basins of attraction of the roots of a polynomial $p$ under $T_1$, which are used to determine a (universal) set of initial conditions for which convergence to all roots of $p$ can be guaranteed. We also numerically explore the global properties of the dynamical plane for $T_\delta$ to better understand the connection between Newton's method and Traub's method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.