Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploring the Expertise of Large Language Models in Materials Science and Metallurgical Engineering (2501.04277v1)

Published 8 Jan 2025 in physics.comp-ph and cond-mat.mtrl-sci

Abstract: The integration of artificial intelligence into various domains is rapidly increasing, with LLMs becoming more prevalent in numerous applications. This work is included in an overall project which aims to train an LLM specifically in the field of materials science. To assess the impact of this specialized training, it is essential to establish the baseline performance of existing LLMs in materials science. In this study, we evaluated 15 different LLMs using the MaScQA question answering (Q&A) benchmark. This benchmark comprises questions from the Graduate Aptitude Test in Engineering (GATE), tailored to test models' capabilities in answering questions related to materials science and metallurgical engineering. Our results indicate that closed-source LLMs, such as Claude-3.5-Sonnet and GPT-4, perform the best with an overall accuracy of ~84%, while the open-source models, Llama3-70b and Phi3-14b, top at ~56% and ~43%, respectively. These findings provide a baseline for the raw capabilities of LLMs on Q&A tasks applied to materials science, and emphasize the substantial improvement that could be brought to open-source models via prompt engineering and fine-tuning strategies. We anticipate that this work could push the adoption of LLMs as valuable assistants in materials science, demonstrating their utility in this specialized domain and related sub-domains.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube