Papers
Topics
Authors
Recent
2000 character limit reached

Data integrity vs. inference accuracy in large AIS datasets

Published 6 Jan 2025 in cs.CR and cs.LG | (2501.03358v1)

Abstract: Automatic Ship Identification Systems (AIS) play a key role in monitoring maritime traffic, providing the data necessary for analysis and decision-making. The integrity of this data is fundamental to the correctness of infer-ence and decision-making in the context of maritime safety, traffic manage-ment and environmental protection. This paper analyzes the impact of data integrity in large AIS datasets, on classification accuracy. It also presents er-ror detection and correction methods and data verification techniques that can improve the reliability of AIS systems. The results show that improving the integrity of AIS data significantly improves the quality of inference, which has a direct impact on operational efficiency and safety at sea.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.