Applications of the Quantile-Based Probabilistic Mean Value Theorem to Distorted Distributions (2501.00362v1)
Abstract: Distorted distributions were introduced in the context of actuarial science for several variety of insurance problems. In this paper we consider the quantile-based probabilistic mean value theorem given in Di Crescenzo et al. [4] and provide some applications based on distorted random variables. Specifically, we consider the cases when the underlying random variables satisfy the proportional hazard rate model and the proportional reversed hazard rate model. A setting based on random variables having the 'new better than used' property is also analyzed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.