Quantitative estimates of the singular values of random i.i.d. matrices (2412.18912v1)
Abstract: Let $M$ be an $n\times n$ random i.i.d. matrix. This paper studies the deviation inequality of $s_{n-k+1}(M)$, the $k$-th smallest singular value of $M$. In particular, when the entries of $M$ are subgaussian, we show that for any $\gamma\in (0, 1/2), \varepsilon>0$ and $\log n\le k\le c\sqrt{n}$ \begin{align} \textsf{P}{s_{n-k+1}(M)\le \frac{\varepsilon}{\sqrt{n}} }\le \Big( \frac{C\varepsilon}{k}\Big){\gamma k{2}}+e{-c_{1}kn}.\nonumber \end{align} This result improves an existing result of Nguyen, which obtained a deviation inequality of $s_{n-k+1}(M)$ with $(C\varepsilon/k){\gamma k{2}}+e{-cn}$ decay.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.