Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Data-Driven Economic Agent-Based Models (2412.16591v1)

Published 21 Dec 2024 in econ.GN and q-fin.EC

Abstract: Economic agent-based models (ABMs) are becoming more and more data-driven, establishing themselves as increasingly valuable tools for economic research and policymaking. We propose to classify the extent to which an ABM is data-driven based on whether agent-level quantities are initialized from real-world micro-data and whether the ABM's dynamics track empirical time series. This paper discusses how making ABMs data-driven helps overcome limitations of traditional ABMs and makes ABMs a stronger alternative to equilibrium models. We review state-of-the-art methods in parameter calibration, initialization, and data assimilation, and then present successful applications that have generated new scientific knowledge and informed policy decisions. This paper serves as a manifesto for data-driven ABMs, introducing a definition and classification and outlining the state of the field, and as a guide for those new to the field.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.