Papers
Topics
Authors
Recent
2000 character limit reached

A Machine Learning Approach for Emergency Detection in Medical Scenarios Using Large Language Models (2412.16341v1)

Published 20 Dec 2024 in cs.LG and cs.CL

Abstract: The rapid identification of medical emergencies through digital communication channels remains a critical challenge in modern healthcare delivery, particularly with the increasing prevalence of telemedicine. This paper presents a novel approach leveraging LLMs and prompt engineering techniques for automated emergency detection in medical communications. We developed and evaluated a comprehensive system using multiple LLaMA model variants (1B, 3B, and 7B parameters) to classify medical scenarios as emergency or non-emergency situations. Our methodology incorporated both system prompts and in-prompt training approaches, evaluated across different hardware configurations. The results demonstrate exceptional performance, with the LLaMA 2 (7B) model achieving 99.7% accuracy and the LLaMA 3.2 (3B) model reaching 99.6% accuracy with optimal prompt engineering. Through systematic testing of training examples within the prompts, we identified that including 10 example scenarios in the model prompts yielded optimal classification performance. Processing speeds varied significantly between platforms, ranging from 0.05 to 2.2 seconds per request. The system showed particular strength in minimizing high-risk false negatives in emergency scenarios, which is crucial for patient safety. The code implementation and evaluation framework are publicly available on GitHub, facilitating further research and development in this crucial area of healthcare technology.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.