Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Microservices-Based Framework for Predictive Analytics and Real-time Performance Enhancement in Travel Reservation Systems (2412.15616v1)

Published 20 Dec 2024 in cs.IT, cs.AI, cs.CE, cs.LG, and math.IT

Abstract: The paper presents a framework of microservices-based architecture dedicated to enhancing the performance of real-time travel reservation systems using the power of predictive analytics. Traditional monolithic systems are bad at scaling and performing with high loads, causing backup resources to be underutilized along with delays. To overcome the above-stated problems, we adopt a modularization approach in decoupling system components into independent services that can grow or shrink according to demand. Our framework also includes real-time predictive analytics, through machine learning models, that optimize forecasting customer demand, dynamic pricing, as well as system performance. With an experimental evaluation applying the approach, we could show that the framework impacts metrics of performance such as response time, throughput, transaction rate of success, and prediction accuracy compared to their conventional counterparts. Not only does the microservices approach improve scalability and fault tolerance like a usual architecture, but it also brings along timely and accurate predictions, which imply a greater customer satisfaction and efficiency of operation. The integration of real-time analytics would lead to more intelligent decision-making, thereby improving the response of the system along with the reliability it holds. A scalable, efficient framework is offered by such a system to address the modern challenges imposed by any form of travel reservation system while considering other complex, data-driven industries as future applications. Future work will be an investigation of advanced AI models and edge processing to further improve the performance and robustness of the systems employed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.