Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Performance of Variational Algorithms for Local Hamiltonian Problems on Random Regular Graphs (2412.15147v1)

Published 19 Dec 2024 in quant-ph

Abstract: We design two variational algorithms to optimize specific 2-local Hamiltonians defined on graphs. Our algorithms are inspired by the Quantum Approximate Optimization Algorithm. We develop formulae to analyze the energy achieved by these algorithms with high probability over random regular graphs in the infinite-size limit, using techniques from [arXiv:2110.14206]. The complexity of evaluating these formulae scales exponentially with the number of layers of the algorithms, so our numerical evaluation is limited to a small constant number of layers. We compare these algorithms to simple classical approaches and a state-of-the-art worst-case algorithm. We find that the symmetry inherent to these specific variational algorithms presents a major \emph{obstacle} to successfully optimizing the Quantum MaxCut (QMC) Hamiltonian on general graphs. Nonetheless, the algorithms outperform known methods to optimize the EPR Hamiltonian of [arXiv:2209.02589] on random regular graphs, and the QMC Hamiltonian when the graphs are also bipartite. As a special case, we show that with just five layers of our algorithm, we can already prepare states within 1.62% error of the ground state energy for QMC on an infinite 1D ring, corresponding to the antiferromagnetic Heisenberg spin chain.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.