Linking disks, spinning vortices and exponential networks of augmentation curves (2412.14901v1)
Abstract: We propose a mirror derivation of the quiver description of open topological strings known as the knots-quivers correspondence, based on enumerative invariants of augmentation curves encoded by exponential networks. Quivers are obtained by studying M2 branes wrapping holomorphic disks with Lagrangian boundary conditions on an M5 brane, through their identification with a distinguished sector of BPS kinky vortices in the 3d-3d dual QFT. Our proposal suggests that holomorphic disks with Lagrangian boundary conditions are mirror to calibrated 1-chains on the associated augmentation curve, whose intersections encode the linking of boundaries.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.