Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-control: A Better Conditional Mechanism for Masked Autoregressive Model (2412.13635v1)

Published 18 Dec 2024 in cs.CV

Abstract: Autoregressive conditional image generation algorithms are capable of generating photorealistic images that are consistent with given textual or image conditions, and have great potential for a wide range of applications. Nevertheless, the majority of popular autoregressive image generation methods rely heavily on vector quantization, and the inherent discrete characteristic of codebook presents a considerable challenge to achieving high-quality image generation. To address this limitation, this paper introduces a novel conditional introduction network for continuous masked autoregressive models. The proposed self-control network serves to mitigate the negative impact of vector quantization on the quality of the generated images, while simultaneously enhancing the conditional control during the generation process. In particular, the self-control network is constructed upon a continuous mask autoregressive generative model, which incorporates multimodal conditional information, including text and images, into a unified autoregressive sequence in a serial manner. Through a self-attention mechanism, the network is capable of generating images that are controllable based on specific conditions. The self-control network discards the conventional cross-attention-based conditional fusion mechanism and effectively unifies the conditional and generative information within the same space, thereby facilitating more seamless learning and fusion of multimodal features.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.