Papers
Topics
Authors
Recent
2000 character limit reached

A Type-Theoretic Definition of Lax $(\infty,\infty)$-Limits

Published 17 Dec 2024 in math.CT, cs.LO, math.AT, and math.LO | (2412.13310v1)

Abstract: We introduce and study a purely syntactic notion of lax cones and $(\infty,\infty)$-limits on finite computads in \texttt{CaTT}, a type theory for $(\infty,\infty)$-categories due to Finster and Mimram. Conveniently, finite computads are precisely the contexts in \texttt{CaTT}. We define a cone over a context to be a context, which is obtained by induction over the list of variables of the underlying context. In the case where the underlying context is globular we give an explicit description of the cone and conjecture that an analogous description continues to hold also for general contexts. We use the cone to control the types of the term constructors for the universal cone. The implementation of the universal property follows a similar line of ideas. Starting with a cone as a context, a set of context extension rules produce a context with the shape of a transfor between cones, i.e.~a higher morphism between cones. As in the case of cones, we use this context as a template to control the types of the term constructor required for universal property.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.