Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum community detection via deterministic elimination (2412.13160v1)

Published 17 Dec 2024 in quant-ph and cond-mat.dis-nn

Abstract: We propose a quantum algorithm for calculating the structural properties of complex networks and graphs. The corresponding protocol -- deteQt -- is designed to perform large-scale community and botnet detection, where a specific subgraph of a larger graph is identified based on its properties. We construct a workflow relying on ground state preparation of the network modularity matrix or graph Laplacian. The corresponding maximum modularity vector is encoded into a $\log(N)$-qubit register that contains community information. We develop a strategy for ``signing'' this vector via quantum signal processing, such that it closely resembles a hypergraph state, and project it onto a suitable linear combination of such states to detect botnets. As part of the workflow, and of potential independent interest, we present a readout technique that allows filtering out the incorrect solutions deterministically. This can reduce the scaling for the number of samples from exponential to polynomial. The approach serves as a building block for graph analysis with quantum speed up and enables the cybersecurity of large-scale networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 30 likes.