Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

QNN-VRCS: A Quantum Neural Network for Vehicle Road Cooperation Systems (2412.12705v2)

Published 17 Dec 2024 in quant-ph

Abstract: The escalating complexity of urban transportation systems, exacerbated by factors such as traffic congestion, diverse transportation modalities, and shifting commuter preferences, necessitates the development of more sophisticated analytical frameworks. Traditional computational approaches often struggle with the voluminous datasets generated by real-time sensor networks, and they generally lack the precision needed for accurate traffic prediction and efficient system optimization. This research integrates quantum computing techniques to enhance Vehicle Road Cooperation Systems (VRCS). By leveraging quantum algorithms, specifically $UU{\dagger}$ and variational $UU{\dagger}$, in conjunction with quantum image encoding methods such as Flexible Representation of Quantum Images (FRQI) and Novel Enhanced Quantum Representation (NEQR), we propose an optimized Quantum Neural Network (QNN). This QNN features adjustments in its entangled layer structure and training duration to better handle the complexities of traffic data processing. Empirical evaluations on two traffic datasets show that our model achieves superior classification accuracies of 97.42% and 84.08% and demonstrates remarkable robustness in various noise conditions. This study underscores the potential of quantum-enhanced 6G solutions in streamlining complex transportation systems, highlighting the pivotal role of quantum technologies in advancing intelligent transportation solutions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.