Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Auto-bidding in real-time auctions via Oracle Imitation Learning (OIL) (2412.11434v3)

Published 16 Dec 2024 in cs.LG and cs.AI

Abstract: Online advertising has become one of the most successful business models of the internet era. Impression opportunities are typically allocated through real-time auctions, where advertisers bid to secure advertisement slots. Deciding the best bid for an impression opportunity is challenging, due to the stochastic nature of user behavior and the variability of advertisement traffic over time. In this work, we propose a framework for training auto-bidding agents in multi-slot second-price auctions to maximize acquisitions (e.g., clicks, conversions) while adhering to budget and cost-per-acquisition (CPA) constraints. We exploit the insight that, after an advertisement campaign concludes, determining the optimal bids for each impression opportunity can be framed as a multiple-choice knapsack problem (MCKP) with a nonlinear objective. We propose an "oracle" algorithm that identifies a near-optimal combination of impression opportunities and advertisement slots, considering both past and future advertisement traffic data. This oracle solution serves as a training target for a student network which bids having access only to real-time information, a method we term Oracle Imitation Learning (OIL). Through numerical experiments, we demonstrate that OIL achieves superior performance compared to both online and offline reinforcement learning algorithms, offering improved sample efficiency. Notably, OIL shifts the complexity of training auto-bidding agents from crafting sophisticated learning algorithms to solving a nonlinear constrained optimization problem efficiently.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube