Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Leveraging Retrieval-Augmented Tags for Large Vision-Language Understanding in Complex Scenes (2412.11396v1)

Published 16 Dec 2024 in cs.CV

Abstract: Object-aware reasoning in vision-language tasks poses significant challenges for current models, particularly in handling unseen objects, reducing hallucinations, and capturing fine-grained relationships in complex visual scenes. To address these limitations, we propose the Vision-Aware Retrieval-Augmented Prompting (VRAP) framework, a generative approach that enhances Large Vision-LLMs (LVLMs) by integrating retrieval-augmented object tags into their prompts. VRAP introduces a novel pipeline where structured tags, including objects, attributes, and relationships, are extracted using pretrained visual encoders and scene graph parsers. These tags are enriched with external knowledge and incorporated into the LLM's input, enabling detailed and accurate reasoning. We evaluate VRAP across multiple vision-language benchmarks, including VQAv2, GQA, VizWiz, and COCO, achieving state-of-the-art performance in fine-grained reasoning and multimodal understanding. Additionally, our ablation studies highlight the importance of retrieval-augmented tags and contrastive learning, while human evaluations confirm VRAP's ability to generate accurate, detailed, and contextually relevant responses. Notably, VRAP achieves a 40% reduction in inference latency by eliminating runtime retrieval. These results demonstrate that VRAP is a robust and efficient framework for advancing object-aware multimodal reasoning.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube