Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models (2412.05275v1)

Published 6 Dec 2024 in cs.CV and cs.AI

Abstract: Text-to-video models have demonstrated impressive capabilities in producing diverse and captivating video content, showcasing a notable advancement in generative AI. However, these models generally lack fine-grained control over motion patterns, limiting their practical applicability. We introduce MotionFlow, a novel framework designed for motion transfer in video diffusion models. Our method utilizes cross-attention maps to accurately capture and manipulate spatial and temporal dynamics, enabling seamless motion transfers across various contexts. Our approach does not require training and works on test-time by leveraging the inherent capabilities of pre-trained video diffusion models. In contrast to traditional approaches, which struggle with comprehensive scene changes while maintaining consistent motion, MotionFlow successfully handles such complex transformations through its attention-based mechanism. Our qualitative and quantitative experiments demonstrate that MotionFlow significantly outperforms existing models in both fidelity and versatility even during drastic scene alterations.

Summary

  • The paper introduces MotionFlow, a training-free framework that enables motion transfer in video diffusion models using cross-attention mechanisms, maintaining high fidelity even with drastic scene changes.
  • MotionFlow extracts subject-specific motion dynamics via cross-attention maps during an inversion stage and uses these maps to guide the denoising process in the generation stage.
  • Experimental evaluations show MotionFlow's superior performance in motion fidelity, text alignment, and temporal consistency, highlighting its practical utility for diverse creative applications.

An Overview of "MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models"

The paper "MotionFlow: Attention-Driven Motion Transfer in Video Diffusion Models" presents a method aiming to address the constraints of existing text-to-video (T2V) models which typically offer limited control over motion patterns. The researchers introduce MotionFlow, a framework that facilitates motion transfer in video diffusion models, leveraging the cross-attention mechanism of these models. This approach does not necessitate additional training and operates primarily during the test phase, utilizing pre-trained video diffusion models to effectively transfer motions.

The primary advantage of MotionFlow lies in its ability to maintain high fidelity and versatility during drastic scene changes. This capability is achieved through an innovative use of cross-attention maps, which regulate spatial and temporal dynamics in video generation. This approach is distinct from conventional methods that emphasize temporal attention features and often suffer from unwanted appearance or scene layout transfer, extensive training requirements, and lack the flexibility needed in practical applications.

Methodological Insights

MotionFlow utilizes a two-stage process: inversion and generation. In the inversion stage, the original video is processed through Denoising Diffusion Implicit Models (DDIM) to obtain noisy latent representations and cross-attention maps. These maps are crucial as they capture the subject-specific motion independent of the video's original appearance and scene composition.

In the generation stage, these extracted maps guide the denoising process of a new video using gradient-based optimization methods to ensure aligned motion dynamics and spatial coherence with the input text prompt. The ability of MotionFlow to adaptively create binary masks from cross-attention maps ensures precise control over generated video content, optimizing cross-attention and temporal attention features to preserve original motion fidelity while adhering to new semantic content directives.

Experimental Evaluation

Qualitative evaluations demonstrate MotionFlow's efficacy in transferring motion across significantly different object categories and motion dynamics without being tethered to the initial video's layout. Quantitative assessments, including text similarity, motion fidelity, and temporal consistency, affirm that the method offers a superior balance between these metrics compared to existing techniques. Users demonstrated a preference for MotionFlow due to its capacity for maintaining high motion fidelity, aligning closely with the given text prompts, and its smoother motion transitions—highlighting its practical effectiveness and adaptability in real-world applications.

Implications and Future Directions

MotionFlow's training-free nature has significant implications, suggesting a pathway for efficient deployment of video diffusion models without the overhead of extensive retraining. Its adaptability to various motion types without reliance on the source video's scene demonstrates its potential utility in creative industries such as film pre-production, animation, and more.

However, the method's dependency on existing pre-trained models signifies that any limitations of these models could propagate into the MotionFlow framework. Future research can explore enhancing model robustness against such deficiencies, perhaps by integrating complementary attention mechanisms or exploring alternative model architectures.

Overall, MotionFlow presents an important step towards nuanced and controlled video generation, offering incisive insights for further advancing the capabilities of video diffusion models in AI-driven content creation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 12 likes.

Reddit Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube