Papers
Topics
Authors
Recent
2000 character limit reached

Covering points by hyperplanes and related problems (2412.05157v1)

Published 6 Dec 2024 in math.CO and cs.CG

Abstract: For a set $P$ of $n$ points in $\mathbb Rd$, for any $d\ge 2$, a hyperplane $h$ is called $k$-rich with respect to $P$ if it contains at least $k$ points of $P$. Answering and generalizing a question asked by Peyman Afshani, we show that if the number of $k$-rich hyperplanes in $\mathbb Rd$, $d \geq 3$, is at least $\Omega(nd/k\alpha + n/k)$, with a sufficiently large constant of proportionality and with $d\le \alpha < 2d-1$, then there exists a $(d-2)$-flat that contains $\Omega(k{(2d-1-\alpha)/(d-1)})$ points of $P$. We also present upper bound constructions that give instances in which the above lower bound is tight. An extension of our analysis yields similar lower bounds for $k$-rich spheres or $k$-rich flats.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.