Frequent elements in union-closed set families (2412.03862v2)
Abstract: The Union-Closed Sets Conjecture asks whether every union-closed set family $\mathcal{F}$ has an element contained in $\frac12 |\mathcal{F}|$ of its sets. In 2022, Nagel posed a generalisation of this problem, suggesting that the $k$th most popular element in a union-closed set family must be contained in at least $\frac{1}{2{k-1} + 1} |\mathcal{F}|$ sets. We combine the entropic method of Gilmer with the combinatorial arguments of Knill to show that this is indeed the case for all $k \ge 3$, and when $k = 2$ and either $|\mathcal{F}| \le 44$ or $|\mathcal{F}| \ge 114$, and characterise the families that achieve equality. Furthermore, we show that when $|\mathcal{F}| \to \infty$, the $k$th most frequent element will appear in at least $\left( \frac{3 - \sqrt{5}}{2} - o(1) \right) |\mathcal{F}|$ sets, reflecting the recent progress made for the Union-Closed Set Conjecture.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.