Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scalable Bayesian Tensor Ring Factorization for Multiway Data Analysis (2412.03321v1)

Published 4 Dec 2024 in cs.LG and stat.ML

Abstract: Tensor decompositions play a crucial role in numerous applications related to multi-way data analysis. By employing a Bayesian framework with sparsity-inducing priors, Bayesian Tensor Ring (BTR) factorization offers probabilistic estimates and an effective approach for automatically adapting the tensor ring rank during the learning process. However, previous BTR method employs an Automatic Relevance Determination (ARD) prior, which can lead to sub-optimal solutions. Besides, it solely focuses on continuous data, whereas many applications involve discrete data. More importantly, it relies on the Coordinate-Ascent Variational Inference (CAVI) algorithm, which is inadequate for handling large tensors with extensive observations. These limitations greatly limit its application scales and scopes, making it suitable only for small-scale problems, such as image/video completion. To address these issues, we propose a novel BTR model that incorporates a nonparametric Multiplicative Gamma Process (MGP) prior, known for its superior accuracy in identifying latent structures. To handle discrete data, we introduce the P\'olya-Gamma augmentation for closed-form updates. Furthermore, we develop an efficient Gibbs sampler for consistent posterior simulation, which reduces the computational complexity of previous VI algorithm by two orders, and an online EM algorithm that is scalable to extremely large tensors. To showcase the advantages of our model, we conduct extensive experiments on both simulation data and real-world applications.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.