Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis (1108.6296v2)

Published 31 Aug 2011 in cs.LG and cs.NA

Abstract: Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches---such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)---amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g. missing data and binary data), and (iii) noisy observations and outliers. To address these issues, we propose tensor-variate latent nonparametric Bayesian models, coupled with efficient inference methods, for multiway data analysis. We name these models InfTucker. Using these InfTucker, we conduct Tucker decomposition in an infinite feature space. Unlike classical tensor decomposition models, our new approaches handle both continuous and binary data in a probabilistic framework. Unlike previous Bayesian models on matrices and tensors, our models are based on latent Gaussian or $t$ processes with nonlinear covariance functions. To efficiently learn the InfTucker from data, we develop a variational inference technique on tensors. Compared with classical implementation, the new technique reduces both time and space complexities by several orders of magnitude. Our experimental results on chemometrics and social network datasets demonstrate that our new models achieved significantly higher prediction accuracy than the most state-of-art tensor decomposition

Citations (130)

Summary

We haven't generated a summary for this paper yet.