Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Preserving Privacy in Software Composition Analysis: A Study of Technical Solutions and Enhancements (2412.00898v1)

Published 1 Dec 2024 in cs.SE and cs.CR

Abstract: Software composition analysis (SCA) denotes the process of identifying open-source software components in an input software application. SCA has been extensively developed and adopted by academia and industry. However, we notice that the modern SCA techniques in industry scenarios still need to be improved due to privacy concerns. Overall, SCA requires the users to upload their applications' source code to a remote SCA server, which then inspects the applications and reports the component usage to users. This process is privacy-sensitive since the applications may contain sensitive information, such as proprietary source code, algorithms, trade secrets, and user data. Privacy concerns have prevented the SCA technology from being used in real-world scenarios. Therefore, academia and the industry demand privacy-preserving SCA solutions. For the first time, we analyze the privacy requirements of SCA and provide a landscape depicting possible technical solutions with varying privacy gains and overheads. In particular, given that de facto SCA frameworks are primarily driven by code similarity-based techniques, we explore combining several privacy-preserving protocols to encapsulate the similarity-based SCA framework. Among all viable solutions, we find that multi-party computation (MPC) offers the strongest privacy guarantee and plausible accuracy; it, however, incurs high overhead (184 times). We optimize the MPC-based SCA framework by reducing the amount of crypto protocol transactions using program analysis techniques. The evaluation results show that our proposed optimizations can reduce the MPC-based SCA overhead to only 8.5% without sacrificing SCA's privacy guarantee or accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.