Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Unsupervised Variable Selection for Ultrahigh-Dimensional Clustering Analysis (2411.19448v1)

Published 29 Nov 2024 in stat.ME

Abstract: Compared to supervised variable selection, the research on unsupervised variable selection is far behind. A forward partial-variable clustering full-variable loss (FPCFL) method is proposed for the corresponding challenges. An advantage is that the FPCFL method can distinguish active, redundant, and uninformative variables, which the previous methods cannot achieve. Theoretical and simulation studies show that the performance of a clustering method using all the variables can be worse if many uninformative variables are involved. Better results are expected if the uninformative variables are excluded. The research addresses a previous concern about how variable selection affects the performance of clustering. Rather than many previous methods attempting to select all the relevant variables, the proposed method selects a subset that can induce an equally good result. This phenomenon does not appear in the supervised variable selection problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.