Generalized Polyhedral DC Optimization Problems (2411.19272v1)
Abstract: The problem of minimizing the difference of two lower semicontinuous, proper, convex functions (a DC function) on a nonempty closed convex set in a locally convex Hausdorff topological vector space is studied in this paper. The focus is made on the situations where either the second component of the objective function is a generalized polyhedral convex function or the first component of the objective function is a generalized polyhedral convex function and the constraint set is generalized polyhedral convex. Various results on optimality conditions, the local solution set, the global solution set, and solution algorithms via duality are obtained. Useful illustrative examples are considered.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.