Neural Networks Use Distance Metrics (2411.17932v1)
Abstract: We present empirical evidence that neural networks with ReLU and Absolute Value activations learn distance-based representations. We independently manipulate both distance and intensity properties of internal activations in trained models, finding that both architectures are highly sensitive to small distance-based perturbations while maintaining robust performance under large intensity-based perturbations. These findings challenge the prevailing intensity-based interpretation of neural network activations and offer new insights into their learning and decision-making processes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.