Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weakly Supervised Panoptic Segmentation for Defect-Based Grading of Fresh Produce

Published 25 Nov 2024 in cs.CV | (2411.16219v2)

Abstract: Visual inspection for defect grading in agricultural supply chains is crucial but traditionally labor-intensive and error-prone. Automated computer vision methods typically require extensively annotated datasets, which are often unavailable in decentralized supply chains. We address this challenge by evaluating the Segment Anything Model (SAM) to generate dense panoptic segmentation masks from sparse annotations. These dense predictions are then used to train a supervised panoptic segmentation model. Focusing on banana surface defects (bruises and scars), we validate our approach using 476 field images annotated with 1440 defects. While SAM-generated masks generally align with human annotations, substantially reducing annotation effort, we explicitly identify failure cases associated with specific defect sizes and shapes. Despite these limitations, our approach offers practical estimates of defect number and relative size from panoptic masks, underscoring the potential and current boundaries of foundation models for defect quantification in low-data agricultural scenarios. GitHub: https://github.com/manuelknott/banana-defect-segmentation

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.