Papers
Topics
Authors
Recent
2000 character limit reached

Cosmological Analysis with Calibrated Neural Quantile Estimation and Approximate Simulators (2411.14748v1)

Published 22 Nov 2024 in astro-ph.CO, astro-ph.IM, and cs.LG

Abstract: A major challenge in extracting information from current and upcoming surveys of cosmological Large-Scale Structure (LSS) is the limited availability of computationally expensive high-fidelity simulations. We introduce Neural Quantile Estimation (NQE), a new Simulation-Based Inference (SBI) method that leverages a large number of approximate simulations for training and a small number of high-fidelity simulations for calibration. This approach guarantees an unbiased posterior and achieves near-optimal constraining power when the approximate simulations are reasonably accurate. As a proof of concept, we demonstrate that cosmological parameters can be inferred at field level from projected 2-dim dark matter density maps up to $k_{\rm max}\sim1.5\,h$/Mpc at $z=0$ by training on $\sim104$ Particle-Mesh (PM) simulations with transfer function correction and calibrating with $\sim102$ Particle-Particle (PP) simulations. The calibrated posteriors closely match those obtained by directly training on $\sim104$ expensive PP simulations, but at a fraction of the computational cost. Our method offers a practical and scalable framework for SBI of cosmological LSS, enabling precise inference across vast volumes and down to small scales.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.