Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Layer Pruning with Consensus: A Triple-Win Solution (2411.14345v1)

Published 21 Nov 2024 in cs.LG and cs.CV

Abstract: Layer pruning offers a promising alternative to standard structured pruning, effectively reducing computational costs, latency, and memory footprint. While notable layer-pruning approaches aim to detect unimportant layers for removal, they often rely on single criteria that may not fully capture the complex, underlying properties of layers. We propose a novel approach that combines multiple similarity metrics into a single expressive measure of low-importance layers, called the Consensus criterion. Our technique delivers a triple-win solution: low accuracy drop, high-performance improvement, and increased robustness to adversarial attacks. With up to 78.80% FLOPs reduction and performance on par with state-of-the-art methods across different benchmarks, our approach reduces energy consumption and carbon emissions by up to 66.99% and 68.75%, respectively. Additionally, it avoids shortcut learning and improves robustness by up to 4 percentage points under various adversarial attacks. Overall, the Consensus criterion demonstrates its effectiveness in creating robust, efficient, and environmentally friendly pruned models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube