Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Economical Approach to Design Posterior Analyses (2411.13748v2)

Published 20 Nov 2024 in stat.ME

Abstract: To design Bayesian studies, criteria for the operating characteristics of posterior analyses - such as power and the type I error rate - are often assessed by estimating sampling distributions of posterior probabilities via simulation. In this paper, we propose an economical method to determine optimal sample sizes and decision criteria for such studies. Using our theoretical results that model posterior probabilities as a function of the sample size, we assess operating characteristics throughout the sample size space given simulations conducted at only two sample sizes. These theoretical results are used to construct bootstrap confidence intervals for the optimal sample sizes and decision criteria that reflect the stochastic nature of simulation-based design. We also repurpose the simulations conducted in our approach to efficiently investigate various sample sizes and decision criteria using contour plots. The broad applicability and wide impact of our methodology is illustrated using two clinical examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.