Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Computational and Experimental Exploration of Protein Fitness Landscapes: Navigating Smooth and Rugged Terrains (2411.12957v1)

Published 20 Nov 2024 in q-bio.PE

Abstract: Proteins evolve through complex sequence spaces, with fitness landscapes serving as a conceptual framework that links sequence to function. Fitness landscapes can be smooth, where multiple similarly accessible evolutionary paths are available, or rugged, where the presence of multiple local fitness optima complicate evolution and prediction. Indeed, many proteins, especially those with complex functions or under multiple selection pressures, exist on rugged fitness landscapes. Here we discuss the theoretical framework that underpins our understanding of fitness landscapes, alongside recent work that has advanced our understanding - particularly the biophysical basis for smoothness versus ruggedness. Finally, we address the rapid advances that have been made in computational and experimental exploration and exploitation of fitness landscapes, and how these can identify efficient routes to protein optimization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.