Papers
Topics
Authors
Recent
2000 character limit reached

An All-in-one Approach for Accelerated Cardiac MRI Reconstruction (2411.10787v1)

Published 16 Nov 2024 in eess.IV

Abstract: Cardiovascular magnetic resonance (CMR) imaging is the gold standard for diagnosing several heart diseases due to its non-invasive nature and proper contrast. MR imaging is time-consuming because of signal acquisition and image formation issues. Prolonging the imaging process can result in the appearance of artefacts in the final image, which can affect the diagnosis. It is possible to speed up CMR imaging using image reconstruction based on deep learning. For this purpose, the high-quality clinical interpretable images can be reconstructed by acquiring highly undersampled k-space data, that is only partially filled, and using a deep learning model. In this study, we proposed a stepwise reconstruction approach based on the Patch-GAN structure for highly undersampled k-space data compatible with the multi-contrast nature, various anatomical views and trajectories of CMR imaging. The proposed approach was validated using the CMRxRecon2024 challenge dataset and outperformed previous studies. The structural similarity index measure (SSIM) values for the first and second tasks of the challenge are 99.07 and 97.99, respectively. This approach can accelerate CMR imaging to obtain high-quality images, more accurate diagnosis and a pleasant patient experience.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.