Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 Pro
2000 character limit reached

Building 6G Radio Foundation Models with Transformer Architectures (2411.09996v1)

Published 15 Nov 2024 in eess.SP, cs.AI, and cs.NI

Abstract: Foundation deep learning (DL) models are general models, designed to learn general, robust and adaptable representations of their target modality, enabling finetuning across a range of downstream tasks. These models are pretrained on large, unlabeled datasets using self-supervised learning (SSL). Foundation models have demonstrated better generalization than traditional supervised approaches, a critical requirement for wireless communications where the dynamic environment demands model adaptability. In this work, we propose and demonstrate the effectiveness of a Vision Transformer (ViT) as a radio foundation model for spectrogram learning. We introduce a Masked Spectrogram Modeling (MSM) approach to pretrain the ViT in a self-supervised fashion. We evaluate the ViT-based foundation model on two downstream tasks: Channel State Information (CSI)-based Human Activity sensing and Spectrogram Segmentation. Experimental results demonstrate competitive performance to supervised training while generalizing across diverse domains. Notably, the pretrained ViT model outperforms a four-times larger model that is trained from scratch on the spectrogram segmentation task, while requiring significantly less training time, and achieves competitive performance on the CSI-based human activity sensing task. This work demonstrates the effectiveness of ViT with MSM for pretraining as a promising technique for scalable foundation model development in future 6G networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.