Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Polarization Image Dehazing Method Based on the Principle of Physical Diffusion (2411.09924v1)

Published 15 Nov 2024 in cs.CV and eess.IV

Abstract: Computer vision is increasingly used in areas such as unmanned vehicles, surveillance systems and remote sensing. However, in foggy scenarios, image degradation leads to loss of target details, which seriously affects the accuracy and effectiveness of these vision tasks. Polarized light, due to the fact that its electromagnetic waves vibrate in a specific direction, is able to resist scattering and refraction effects in complex media more effectively compared to unpolarized light. As a result, polarized light has a greater ability to maintain its polarization characteristics in complex transmission media and under long-distance imaging conditions. This property makes polarized imaging especially suitable for complex scenes such as outdoor and underwater, especially in foggy environments, where higher quality images can be obtained. Based on this advantage, we propose an innovative semi-physical polarization dehazing method that does not rely on an external light source. The method simulates the diffusion process of fog and designs a diffusion kernel that corresponds to the image blurriness caused by this diffusion. By employing spatiotemporal Fourier transforms and deconvolution operations, the method recovers the state of fog droplets prior to diffusion and the light inversion distribution of objects. This approach effectively achieves dehazing and detail enhancement of the scene.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.