Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Conditional regression for the Nonlinear Single-Variable Model (2411.09686v1)

Published 14 Nov 2024 in stat.ML and cs.LG

Abstract: Several statistical models for regression of a function $F$ on $\mathbb{R}d$ without the statistical and computational curse of dimensionality exist, for example by imposing and exploiting geometric assumptions on the distribution of the data (e.g. that its support is low-dimensional), or strong smoothness assumptions on $F$, or a special structure $F$. Among the latter, compositional models assume $F=f\circ g$ with $g$ mapping to $\mathbb{R}r$ with $r\ll d$, have been studied, and include classical single- and multi-index models and recent works on neural networks. While the case where $g$ is linear is rather well-understood, much less is known when $g$ is nonlinear, and in particular for which $g$'s the curse of dimensionality in estimating $F$, or both $f$ and $g$, may be circumvented. In this paper, we consider a model $F(X):=f(\Pi_\gamma X) $ where $\Pi_\gamma:\mathbb{R}d\to[0,\rm{len}_\gamma]$ is the closest-point projection onto the parameter of a regular curve $\gamma: [0,\rm{len}\gamma]\to\mathbb{R}d$ and $f:[0,\rm{len}\gamma]\to\mathbb{R}1$. The input data $X$ is not low-dimensional, far from $\gamma$, conditioned on $\Pi_\gamma(X)$ being well-defined. The distribution of the data, $\gamma$ and $f$ are unknown. This model is a natural nonlinear generalization of the single-index model, which corresponds to $\gamma$ being a line. We propose a nonparametric estimator, based on conditional regression, and show that under suitable assumptions, the strongest of which being that $f$ is coarsely monotone, it can achieve the $one$-$dimensional$ optimal min-max rate for non-parametric regression, up to the level of noise in the observations, and be constructed in time $\mathcal{O}(d2n\log n)$. All the constants in the learning bounds, in the minimal number of samples required for our bounds to hold, and in the computational complexity are at most low-order polynomials in $d$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.