The geometry of the deep linear network (2411.09004v1)
Abstract: This article provides an expository account of training dynamics in the Deep Linear Network (DLN) from the perspective of the geometric theory of dynamical systems. Rigorous results by several authors are unified into a thermodynamic framework for deep learning. The analysis begins with a characterization of the invariant manifolds and Riemannian geometry in the DLN. This is followed by exact formulas for a Boltzmann entropy, as well as stochastic gradient descent of free energy using a Riemannian Langevin Equation. Several links between the DLN and other areas of mathematics are discussed, along with some open questions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.