Papers
Topics
Authors
Recent
2000 character limit reached

Numerically flat foliations and holomorphic Poisson geometry

Published 13 Nov 2024 in math.AG, math.DG, and math.SG | (2411.08806v1)

Abstract: We investigate the structure of smooth holomorphic foliations with numerically flat tangent bundles on compact K\"ahler manifolds. Extending earlier results on non-uniruled projective manifolds by the second and fourth authors, we show that such foliations induce a decomposition of the tangent bundle of the ambient manifold, have leaves uniformized by Euclidean spaces, and have torsion canonical bundle. Additionally, we prove that smooth two-dimensional foliations with numerically trivial canonical bundle on projective manifolds are either isotrivial fibrations or have numerically flat tangent bundles. This in turn implies a global Weinstein splitting theorem for rank-two Poisson structures on projective manifolds. We also derive new Hodge-theoretic conditions for the existence of zeros of Poisson structures on compact K\"ahler manifolds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.