Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalized Eigenspaces and Pseudospectra of Nonnormal and Defective Matrix-Valued Dynamical Systems (2411.06472v2)

Published 10 Nov 2024 in math-ph, cond-mat.stat-mech, math.MP, math.PR, and nlin.CD

Abstract: We consider nonnormal matrix-valued dynamical systems with discrete time. For an eigenvalue of matrix, the number of times it appears as a root of the characteristic polynomial is called the algebraic multiplicity. On the other hand, the geometric multiplicity is the dimension of the linear space of eigenvectors associated with that eigenvalue. If the former exceeds the latter, then the eigenvalue is said to be defective and the matrix becomes nondiagonalizable by any similarity transformation. The discrete-time of our dynamics is identified with the geometric multiplicity of the zero eigenvalue $\lambda_0=0$. Its algebraic multiplicity takes about half of the matrix size at $t=1$ and increases stepwise in time, which keeps excess to the geometric multiplicity until their coincidence at the final time. Our model exhibits relaxation processes from far-from-normal to near-normal matrices, in which the defectivity of $\lambda_0$ is recovering in time. We show that such processes are realized as size reductions of pseudospectrum including $\lambda_0$. Here the pseudospectra are the domains on the complex plane which are not necessarily exact spectra but in which the resolvent of matrix takes extremely large values. The defective eigenvalue $\lambda_0$ is sensitive to perturbation and the eigenvalues of the perturbed systems are distributed densely in the pseudospectrum including $\lambda_0$. By constructing generalized eigenspace for $\lambda_0$, we give the Jordan block decomposition for the resolvent of matrix and characterize the pseudospectrum dynamics. Numerical study of the systems perturbed by Gaussian random matrices supports the validity of the present analysis.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: