Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GPT Semantic Cache: Reducing LLM Costs and Latency via Semantic Embedding Caching (2411.05276v3)

Published 8 Nov 2024 in cs.LG

Abstract: LLMs, such as GPT, have revolutionized artificial intelligence by enabling nuanced understanding and generation of human-like text across a wide range of applications. However, the high computational and financial costs associated with frequent API calls to these models present a substantial bottleneck, especially for applications like customer service chatbots that handle repetitive queries. In this paper, we introduce GPT Semantic Cache, a method that leverages semantic caching of query embeddings in in-memory storage (Redis). By storing embeddings of user queries, our approach efficiently identifies semantically similar questions, allowing for the retrieval of pre-generated responses without redundant API calls to the LLM. This technique achieves a notable reduction in operational costs while significantly enhancing response times, making it a robust solution for optimizing LLM-powered applications. Our experiments demonstrate that GPT Semantic Cache reduces API calls by up to 68.8% across various query categories, with cache hit rates ranging from 61.6% to 68.8%. Additionally, the system achieves high accuracy, with positive hit rates exceeding 97%, confirming the reliability of cached responses. This technique not only reduces operational costs, but also improves response times, enhancing the efficiency of LLM-powered applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.