Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Unifying Interpretability and Control: Evaluation via Intervention (2411.04430v2)

Published 7 Nov 2024 in cs.LG

Abstract: With the growing complexity and capability of LLMs, a need to understand model reasoning has emerged, often motivated by an underlying goal of controlling and aligning models. While numerous interpretability and steering methods have been proposed as solutions, they are typically designed either for understanding or for control, seldom addressing both. Additionally, the lack of standardized applications, motivations, and evaluation metrics makes it difficult to assess methods' practical utility and efficacy. To address the aforementioned issues, we argue that intervention is a fundamental goal of interpretability and introduce success criteria to evaluate how well methods can control model behavior through interventions. To evaluate existing methods for this ability, we unify and extend four popular interpretability methods-sparse autoencoders, logit lens, tuned lens, and probing-into an abstract encoder-decoder framework, enabling interventions on interpretable features that can be mapped back to latent representations to control model outputs. We introduce two new evaluation metrics: intervention success rate and coherence-intervention tradeoff, designed to measure the accuracy of explanations and their utility in controlling model behavior. Our findings reveal that (1) while current methods allow for intervention, their effectiveness is inconsistent across features and models, (2) lens-based methods outperform SAEs and probes in achieving simple, concrete interventions, and (3) mechanistic interventions often compromise model coherence, underperforming simpler alternatives, such as prompting, and highlighting a critical shortcoming of current interpretability approaches in applications requiring control.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.