Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Composable Interventions for Language Models (2407.06483v2)

Published 9 Jul 2024 in cs.LG and cs.CL

Abstract: Test-time interventions for LLMs can enhance factual accuracy, mitigate harmful outputs, and improve model efficiency without costly retraining. But despite a flood of new methods, different types of interventions are largely developing independently. In practice, multiple interventions must be applied sequentially to the same model, yet we lack standardized ways to study how interventions interact. We fill this gap by introducing composable interventions, a framework to study the effects of using multiple interventions on the same LLMs, featuring new metrics and a unified codebase. Using our framework, we conduct extensive experiments and compose popular methods from three emerging intervention categories -- Knowledge Editing, Model Compression, and Machine Unlearning. Our results from 310 different compositions uncover meaningful interactions: compression hinders editing and unlearning, composing interventions hinges on their order of application, and popular general-purpose metrics are inadequate for assessing composability. Taken together, our findings showcase clear gaps in composability, suggesting a need for new multi-objective interventions. All of our code is public: https://github.com/hartvigsen-group/composable-interventions.

Citations (2)

Summary

  • The paper introduces a composable interventions framework that sequentially applies multiple test-time modifications to pretrained language models.
  • It develops novel metrics like Order-free Error and Order Sensitivity to evaluate the robustness of interventions in Llama3-8B experiments.
  • The findings reveal that model compression can undermine other interventions, emphasizing the need for careful sequencing to optimize performance.

Composable Interventions for LLMs: An Analytical Overview

Implementing interventions to enhance the capabilities of pretrained LMs—such as improving factual accuracy, mitigating harmful outputs, and optimizing efficiency—is a practical necessity. The paper "Composable Interventions for LLMs" by Arinbjörn Kolbeinsson et al. proposes a structured framework for evaluating and applying multiple test-time interventions in LLMs and investigates the complex interactions among them.

Key Contributions and Findings

The authors introduce the notion of composable interventions, assessing how these modifications can be sequentially applied to a LLM without negatively impacting each other. The framework includes novel metrics and a unified codebase to facilitate comprehensive evaluations.

  1. Composable Interventions Framework:
    • Order-free Error and Order Sensitivity metrics are developed to gauge the impact of sequential intervention applications. These metrics allow for the evaluation of interventive operations' robustness and the effects of their interaction.
    • The framework incorporates a unified codebase that utilizes state-of-the-art methods across three intervention categories: knowledge editing, model compression, and machine unlearning.
  2. Experimental Approach:
    • Extensive experiments were conducted using the Llama3-8B model, analyzing 310 different composition configurations of interventions.
    • The interventions tested include knowledge editing methods (e.g., MEMIT, LoRA, and standard finetuning), model compression techniques (e.g., SparseGPT, Wanda, GPTQ, and AWQ), and machine unlearning methods (e.g., Gradient Ascent, Gradient Difference, and Representation Misdirection Unlearning).
  3. Significant Observations:
    • Model Compression: A general finding is that model compression frequently undermines the effectiveness of other interventions, especially knowledge editing and unlearning.
    • Order of Application: The sequence in which interventions are applied significantly impacts their success. For instance, knowledge editing performs better when applied prior to compression.
    • Metric Adequacy: General-purpose performance metrics, such as MMLU accuracy, often fail to capture the complexities of composable interventions, highlighting the necessity for detailed, intervention-specific evaluations.

Implications and Future Directions

Practical Implications

  • Adaptive Interventions: The insight that model compression often deteriorates the efficacy of subsequent interventions necessitates the development of compression techniques explicitly designed to preserve the performance of other subsequent interventions.
  • Sequential Applications: Understanding the importance of the sequence in which interventions are applied can guide practitioners in structuring updates to LMs, particularly in dynamic environments where frequent updates are necessary.
  • Robust Evaluation Metrics: The inadequacy of general-purpose metrics for composability underscores the importance of adopting multi-faceted evaluation strategies to obtain a comprehensive understanding of intervention impacts.

Theoretical Implications

  • Understanding LM Internals: The differential performance outcomes based on the sequence of interventions invite further research into how interventions impact the internal representations of LMs. Specific focus could be given to the robustness of knowledge representations post-compression.
  • Framework Extensibility: While the current paper focuses on Llama3-8B, the proposed evaluative framework could be extended to include a variety of model architectures and sizes, potentially generalizing the findings across differing contexts of LMs.

Conclusion

The paper by Kolbeinsson et al. provides a structured approach to understanding and executing multiple interventions on LLMs. By exposing intricate interactions through robust metrics and extensive empirical validation, the authors establish a foundational framework for future research and practical applications in maintaining and enhancing pretrained LLMs. Future work will likely build upon this framework, developing increasingly sophisticated and composable intervention techniques, thus paving the way for more resilient and adaptable LLMs.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 70 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com