Papers
Topics
Authors
Recent
2000 character limit reached

Comment on 'Sparse Bayesian Factor Analysis when the Number of Factors is Unknown' by S. Frühwirth-Schnatter, D. Hosszejni, and H. Freitas Lopes (2411.02531v3)

Published 4 Nov 2024 in stat.ME and econ.EM

Abstract: The techniques suggested in Fr\"uhwirth-Schnatter et al. (2024) concern sparsity and factor selection and have enormous potential beyond standard factor analysis applications. We show how these techniques can be applied to Latent Space (LS) models for network data. These models suffer from well-known identification issues of the latent factors due to likelihood invariance to factor translation, reflection, and rotation (see Hoff et al., 2002). A set of observables can be instrumental in identifying the latent factors via auxiliary equations (see Liu et al., 2021). These, in turn, share many analogies with the equations used in factor modeling, and we argue that the factor loading restrictions may be beneficial for achieving identification.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.