Neural Network-Based Design of Approximate Gottesman-Kitaev-Preskill Code (2411.01265v1)
Abstract: Gottesman-Kitaev-Preskill (GKP) encoding holds promise for continuous-variable fault-tolerant quantum computing. While an ideal GKP encoding is abstract and impractical due to its nonphysical nature, approximate versions provide viable alternatives. Conventional approximate GKP codewords are superpositions of multiple {large-amplitude} squeezed coherent states. This feature ensures correctability against single-photon loss and dephasing {at short times}, but also increases the difficulty of preparing the codewords. To minimize this trade-off, we utilize a neural network to generate optimal approximate GKP states, allowing effective error correction with just a few squeezed coherent states. We find that such optimized GKP codes outperform the best conventional ones, requiring fewer squeezed coherent states, while maintaining simple and generalized stabilizer operators. Specifically, the former outperform the latter with just \textit{one third} of the number of squeezed coherent states at a squeezing level of 9.55 dB. This optimization drastically decreases the complexity of codewords while improving error correctability.
- D. A. Lidar and T. A. Brun, Quantum Error Correction (Cambridge University Press, 2013).
- B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
- H. Mabuchi and P. Zoller, Inversion of quantum jumps in quantum optical systems under continuous observation, Phys. Rev. Lett. 76, 3108 (1996).
- J. P. Barnes and W. S. Warren, Automatic quantum error correction, Phys. Rev. Lett. 85, 856 (2000).
- I. L. Chuang, D. W. Leung, and Y. Yamamoto, Bosonic quantum codes for amplitude damping, Phys. Rev. A 56, 1114 (1997).
- T. Matsuura, H. Yamasaki, and M. Koashi, Equivalence of approximate Gottesman-Kitaev-Preskill codes, Phys. Rev. A 102, 032408 (2020).
- J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011).
- J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68, 064509 (2003).
- D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
- K. Fukui, T. Matsuura, and N. C. Menicucci, Efficient concatenated bosonic code for additive Gaussian noise, Phys. Rev. Lett. 131, 170603 (2023).
- S. Heußen, D. F. Locher, and M. Müller, Measurement-free fault-tolerant quantum error correction in near-term devices, PRX Quantum 5, 010333 (2024).
- See supplemental material for more details, which includes ref. [62].
- J. Hastrup and U. L. Andersen, Protocol for Generating Optical Gottesman-Kitaev-Preskill States with Cavity QED, Phys. Rev. Lett. 128, 170503 (2022).
- D. J. Weigand and B. M. Terhal, Generating grid states from Schrödinger-cat states without postselection, Phys. Rev. A 97, 022341 (2018).
- H. M. Vasconcelos, L. Sanz, and S. Glancy, All-optical generation of states for “Encoding a qubit in an oscillator”, Opt. Lett. 35, 3261 (2010).
- E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A 55, 900 (1997).
- E. Knill, R. Laflamme, and L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000).
- K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4, 251 (1991).
- M. H. Shaw, A. C. Doherty, and A. L. Grimsmo, Stabilizer subsystem decompositions for single- and multimode Gottesman-Kitaev-Preskill codes, PRX Quantum 5, 010331 (2024).
- A. L. Grimsmo and S. Puri, Quantum error correction with the Gottesman-Kitaev-Preskill code, PRX Quantum 2, 020101 (2021).
- S. Glancy and E. Knill, Error analysis for encoding a qubit in an oscillator, Phys. Rev. A 73, 012325 (2006).
- K. Fukui, A. Tomita, and A. Okamoto, Analog Quantum Error Correction with Encoding a Qubit into an Oscillator, Phys. Rev. Lett. 119, 180507 (2017).
- S. M. Girvin, Introduction to quantum error correction and fault tolerance, SciPost Phys. Lect. Notes , 70 (2023).
- B. M. Terhal, J. Conrad, and C. Vuillot, Towards scalable bosonic quantum error correction, Quantum Sci. Technol. 5, 043001 (2020).
- C. Bény and O. Oreshkov, General conditions for approximate quantum error correction and near-optimal recovery channels, Phys. Rev. Lett. 104, 120501 (2010).
- M. Reimpell and R. F. Werner, Iterative optimization of quantum error correcting codes, Phys. Rev. Lett. 94, 080501 (2005).
- H. P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A 13, 2226 (1976).
- A. S. Fletcher, P. W. Shor, and M. Z. Win, Optimum quantum error recovery using semidefinite programming, Phys. Rev. A 75, 012338 (2007).
- R. L. Kosut and D. A. Lidar, Quantum error correction via convex optimization, Quantum Inf. Process. 8, 443 (2009).
- S. Taghavi, T. A. Brun, and D. A. Lidar, Optimized entanglement-assisted quantum error correction, Phys. Rev. A 82, 042321 (2010a).
- D. S. Schlegel, F. Minganti, and V. Savona, Quantum error correction using squeezed Schrödinger cat states, Phys. Rev. A 106, 022431 (2022).
- J. R. Johansson, P. D. Nation, and F. Nori, Qutip: An open-source python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012).
- J. R. Johansson, P. D. Nation, and F. Nori, Qutip 2: A python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
- R. L. Kosut, A. Shabani, and D. A. Lidar, Robust quantum error correction via convex optimization, Phys. Rev. Lett. 100, 020502 (2008).
- S. Taghavi, T. A. Brun, and D. A. Lidar, Optimized entanglement-assisted quantum error correction, Phys. Rev. A 82, 042321 (2010b).
- S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization, J. Mach. Learn. Res. 17, 1 (2016).
- B. Royer, S. Singh, and S. M. Girvin, Stabilization of finite-energy Gottesman-Kitaev-Preskill states, Phys. Rev. Lett. 125, 260509 (2020).
- C. Cafaro and P. van Loock, Approximate quantum error correction for generalized amplitude-damping errors, Phys. Rev. A 89, 022316 (2014).
- K. Audenaert and B. De Moor, Optimizing completely positive maps using semidefinite programming, Phys. Rev. A 65, 030302 (2002).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.