Papers
Topics
Authors
Recent
2000 character limit reached

Not So Flat Metrics (2411.00962v1)

Published 1 Nov 2024 in hep-th

Abstract: In order to be in control of the $\alpha'$ derivative expansion, geometric string compactifications are understood in the context of a large volume approximation. In this letter, we consider the reduction of these higher derivative terms, and propose an improved estimate on the large volume approximation using numerical Calabi-Yau metrics obtained via machine learning methods. Further to this, we consider the $\alpha'3$ corrections to numerical Calabi-Yau metrics in the context of IIB string theory. This correction represents one of several important contributions for realistic string compactifications -- alongside, for example, the backreaction of fluxes and local sources -- all of which have important consequences for string phenomenology. As a simple application of the corrected metric, we compute the change to the spectrum of the scalar Laplacian.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.