Papers
Topics
Authors
Recent
2000 character limit reached

Characterizing extremal dependence on a hyperplane (2411.00573v2)

Published 1 Nov 2024 in math.ST and stat.TH

Abstract: Quantifying the risks of extreme scenarios requires understanding the tail behaviours of variables of interest. While the tails of individual variables can be characterized parametrically, the extremal dependence across variables can be complex and its modeling remains one of the core problems in extreme value analysis. Notably, existing measures for extremal dependence, such as angular components and spectral random vectors, reside on nonlinear supports, such that statistical models and methods designed for linear vector spaces cannot be readily applied. In this paper, we show that the extremal dependence of $d$ asymptotically dependent variables can be characterized by a class of random vectors residing on a $(d-1)$-dimensional hyperplane. This translates the analyses of multivariate extremes to that on a linear vector space, opening up the potentials for the application of existing statistical techniques, particularly in statistical learning and dimension reduction. As an example, we show that a lower-dimensional approximation of multivariate extremes can be achieved through principal component analysis on the hyperplane. Additionally, through this framework, the widely used H\"usler-Reiss family for modelling extremes is characterized by the Gaussian family residing on the hyperplane, thereby justifying its status as the Gaussian counterpart for extremes.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.