Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exciton localization in two-dimensional semiconductors through modification of the dielectric environment (2411.00385v1)

Published 1 Nov 2024 in cond-mat.mes-hall

Abstract: Monolayer semiconductors, given their thickness at the atomic scale, present unique electrostatic environments due to the sharp interfaces between the semiconductor film and surrounding materials. These interfaces significantly impact both the quasiparticle band structure and the electrostatic interactions between charge carriers. Akey area of interest in these materials is the behavior of bound electron-hole pairs (excitons) within the ultra-thin layer, which plays a crucial role in its optoelectronic properties. In this work, we investigate the feasibility of generating potential traps that completely confine excitons in the thin semiconductor by engineering the surrounding dielectric environment. By evaluating the simultaneous effects on bandgap renormalization and modifications to the strength of the electron-hole Coulomb-interaction, both associated to the modulation of the screening by the materials sandwiching the monolayer, we anticipate the existence of low-energy regions in which the localization of the exciton center of mass may be achieved. Our results suggest that for certain dielectric configurations, it is possible to generate complete discretization of exciton eigenenergies in the order of tens of meV. Such quantization of energy levels of two-dimensional excitons could be harnessed for applications in new-generation optoelectronic devices, which are necessary for the advancement of technologies like quantum computing and quantum communication.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. S. Ayari, A. Smiri, A. Hichri, S. Jaziri, and T. Amand, “Radiative lifetime of localized excitons in transition metal dichalcogenides,” Physical review. B, Condensed matter, vol. 98, 03 2018.
  2. G.-H. Peng, P.-Y. Lo, W.-H. Li, Y.-C. Huang, Y.-H. Chen, C.-H. Lee, C.-K. Yang, and S.-J. Cheng, “Distinctive signatures of the spin- and momentum-forbidden dark exciton states in the photoluminescence of strained wse 2 monolayers under thermalization,” Nano Letters, vol. 19, 03 2019.
  3. N. Gauriot, A. Ashoka, J. Lim, S. See, J. Sung, and A. R. Ananth, “Direct imaging of carrier funneling in a dielectric engineered 2d semiconductor,” ACS Nano, vol. 18, 12 2023.
  4. A. Hichri, I. Amara, S. Ayari, and S. Jaziri, “Exciton center-of-mass localization and dielectric environment effect in monolayer ws 2,” Journal of Applied Physics, vol. 121, p. 235702, 06 2017.
  5. A. Smiri, T. Amand, and S. Jaziri, “Optical properties of exciton in two-dimensional transition metal dichalcogenide nanobubbles,” The Journal of chemical physics, 03 2021.
  6. Y. Cho and T. Berkelbach, “Environmentally-sensitive theory of electronic and optical transitions in atomically-thin semiconductors,” Physical Review B, vol. 97, 09 2017.
  7. J. Pu and T. Takenobu, “Monolayer transition metal dichalcogenides as light sources,” Advanced Materials, vol. 30, p. 1707627, 06 2018.
  8. H. Wang, F. Liu, Z. Fang, W. Zhou, and Z. Liu, “Two-dimensional heterostructures: Fabrication, characterization, and application,” Nanoscale, vol. 6, 08 2014.
  9. Q. Junlei, Z. Wu, W. Wang, K. Bao, L. Wang, J. Wu, C. Ke, Y. Xu, and Q. He, “Fabrication and applications of van der waals heterostructures,” International Journal of Extreme Manufacturing, vol. 5, 04 2023.
  10. Z. Wang, B. Xu, S. Pei, J. Zhu, T. Wen, C. Jiao, J. Li, M. Zhang, and J. Xia, “Recent progress in 2d van der waals heterostructures: fabrication, properties, and applications,” Science China Information Sciences, vol. 65, 09 2022.
  11. V. H. Nguyen, M. Kim, C. T. Nguyen, M. Suleman, N. Cong, N. Nasir, M. Rehman, H. Park, S. Lee, S. Kim, S. Kumar, and Y. Seo, “Fast fabrication technique for high-quality van der waals heterostructures using inert shielding gas environment,” Applied Surface Science, vol. 639, p. 158186, 08 2023.
  12. A. Raja, A. Chaves, J. Yu, G. Arefe, H. Hill, A. Rigosi, T. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L. Brus, T. Heinz, D. Reichman, and A. Chernikov, “Coulomb engineering of the bandgap and excitons in two-dimensional materials,” Nature Communications, vol. 8, p. 15251, 05 2017.
  13. M. Brahma, M. Van de Put, E. Chen, M. Fischetti, and W. Vandenberghe, “The importance of the image forces and dielectric environment in modeling contacts to two-dimensional materials,” npj 2D Materials and Applications, vol. 7, 03 2023.
  14. J. Ryou, Y.-S. Kim, S. Kc, and K. Cho, “Monolayer mos2 bandgap modulation by dielectric environments and tunable bandgap transistors,” Scientific reports, vol. 6, p. 29184, 07 2016.
  15. N. S. Rytova, “Screened potential of a point charge in a thin film,” Proc. MSU, Phys., 06 1967.
  16. L. V. Keldysh, “Coulomb interaction in thin semiconductor and semimetal films,” Soviet Journal of Experimental and Theoretical Physics Letters, vol. 29, p. 716, 1979.
  17. M. Kumagai and T. Takagahara, “Excitonic and nonlinear-optical properties of dielectric quantum-well structures,” Physical review. B, Condensed matter, vol. 40, pp. 12359–12381, 01 1990.
  18. E. Hanamura, N. Nagaosa, M. Kumagai, and T. Takagahara, “Quantum wells with enhanced exciton effects and optical non-linearity,” Materials Science and Engineering B-advanced Functional Solid-state Materials, vol. 1, pp. 255–258, 12 1988.
  19. G. Gupta, S. Kallatt, and K. Majumdar, “Direct observation of giant binding energy modulation of exciton complexes in monolayer mose 2,” Physical Review B, vol. 96, 03 2017.
  20. R. Salzwedel, L. Greten, S. Schmidt, S. Hughes, A. Knorr, and M. Selig, “Spatial exciton localization at interfaces of metal nanoparticles and atomically thin semiconductors,” Physical Review B, vol. 109, 01 2024.
  21. D. Kleinman and R. Miller, “Band-gap renormalization in semiconductor quantum wells containing carriers,” Physical review. B, Condensed matter, vol. 32, pp. 2266–2272, 09 1985.
  22. S. Das Sarma, R. Jalabert, and S. Yang, “Band-gap renormalization in semiconductor quantum wells.,” Physical review. B, Condensed matter, vol. 41, pp. 8288–8294, 05 1990.
  23. A. Rodina and A. Efros, “Effect of dielectric confinement on optical properties of colloidal nanostructures,” Journal of Experimental and Theoretical Physics, vol. 122, pp. 554–566, 03 2016.
  24. P.-Y. Lo, G.-H. Peng, W.-H. Li, Y. Yang, and S.-J. Cheng, “Full-zone valley polarization landscape of finite-momentum exciton in transition metal dichalcogenide monolayers,” Phys. Rev. Res., vol. 3, p. 043198, Dec 2021.
  25. G.-H. Peng, O. J. G. Sanchez, W.-H. Li, P.-Y. Lo, and S.-J. Cheng, “Tailoring the superposition of finite-momentum valley exciton states in transition-metal dichalcogenide monolayers by using polarized twisted light,” Phys. Rev. B, vol. 106, p. 155304, Oct 2022.
  26. T. Zhu, C. Zheng, L. Xu, and M. Yang, “Exciton dissociation in two-dimensional transition metal dichalcogenides: Excited states and substrate effects,” Physical Review B, vol. 110, 10 2024.
  27. Y. Tian, Q. Liu, Y. Ma, N. Wang, and Y. Gu, “Dielectric resonances of the cylindrical micro/nano cavity within epsilon-near-zero materials,” Optics Express, vol. 31, 10 2023.
  28. K. Shenton, D. Bowler, and W. L. Cheah, “Influence of crystal structure on charge carrier effective masses in bifeo3,” Physical Review B, vol. 100, 04 2018.
  29. W.-H. Li, J.-D. Lin, P.-Y. Lo, G.-H. Peng, C.-Y. Hei, S.-Y. Chen, and S.-J. Cheng, “The key role of non-local screening in the environment-insensitive exciton fine structures of transition-metal dichalcogenide monolayers,” Nanomaterials, vol. 13, no. 11, 2023.
  30. M. Capizzi, S. Modesti, A. Frova, J. Staehli, M. Guzzi, and R. Logan, “Electron-hole plasma in direct-gap ga1-xalx as and k-selection rule,” Physical Review B, vol. 29, pp. 2028–2035, 02 1984.
  31. Y. Onishi and L. Fu, “Universal relation between energy gap and dielectric constant,” Physical Review B, vol. 110, 10 2024.
  32. J. Sans, J. F. Sánchez Royo, and A. Segura, “Study of the bandgap renormalization in ga-doped zno films by means of optical absorption under high pressure and photoelectron spectroscopy,” Superlattices and Microstructures - SUPERLATTICE MICROSTRUCT, vol. 43, pp. 362–367, 04 2008.
  33. L. Gil and G. L. Lippi, “Phase instabilities in semiconductor lasers: A codimension-2 analysis,” Physical Review A, vol. 90, 11 2014.
  34. T. Dinh Van, M. Yang, and H. Dery, “The coulomb interaction in monolayer transition-metal dichalcogenides,” Physical Review B, vol. 98, 09 2018.
  35. Z. Lebens-Higgins, D. Scanlon, H. Paik, S. Sallis, Y. Nie, M. Uchida, N. Quackenbush, M. Wahila, G. Sterbinsky, D. Arena, J. Woicik, D. Schlom, and L. Piper, “Direct observation of electrostatically driven band gap renormalization in a degenerate perovskite transparent conducting oxide,” Phys. Rev. Lett., vol. 116, p. 027602, 01 2016.
  36. M. Ugeda, A. Bradley, S.-F. Shi, F. Da Jornada, Y. Zhang, D. Qiu, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. Louie, and M. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nature materials, vol. 13, 04 2014.
  37. T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, “Theory of neutral and charged excitons in monolayer transition metal dichalcogenides,” Phys. Rev. B, vol. 88, p. 045318, Jul 2013.
  38. A. Laturia, M. Van de Put, and W. Vandenberghe, “Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk,” npj 2D Materials and Applications, vol. 2, 03 2018.
  39. J. L. Rosenholtz and D. T. Smith, “The dielectric constant of mineral powders,” American Mineralogist: Journal of Earth and Planetary Materials, vol. 21, no. 2, pp. 115–120, 1936.
  40. A. Maruvada, K. Shubhakar, N. Raghavan, K. Pey, and S. O’Shea, “Dielectric breakdown of 2d muscovite mica,” Scientific Reports, vol. 12, 08 2022.
  41. J. Robertson, “High dielectric constant oxides,” European Physical Journal-applied Physics, vol. 28, no. 3, pp. 265–291, 2004.
  42. J. Liu, M. Okamura, H. Mashiko, M. Imura, M. Liao, R. Kikuchi, M. Suzuka, and Y. Koide, “Experimental formation and mechanism study for super-high dielectric constant alox/tioy nanolaminates,” Nanomaterials, vol. 13, p. 1256, 04 2023.
  43. C. Inc., “Comsol,” 2020.
  44. H. Y. Ramírez and A. Santana, “Two interacting electrons confined in a 3d parabolic cylindrically symmetric potential, in presence of axial magnetic field: A finite element approach,” Computer Physics Communications, vol. 183, no. 8, pp. 1654–1657, 2012.
  45. N. R. Fino, A. S. Camacho, and H. Y. Ramírez, “Coupling effects on photoluminescence of exciton states in asymmetric quantum dot molecules,” Nanoscale Research Letters, vol. 9, p. 297, Jun 2014.
  46. M. Zapata-Herrera, Ángela S. Camacho, and H. Y. Ramírez, “Influence of the confinement potential on the size-dependent optical response of metallic nanometric particles,” Computer Physics Communications, vol. 227, pp. 1–7, 2018.
  47. K. K. Kam and B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group vib transition metal dichalcogenides,” The Journal of Physical Chemistry, vol. 86, pp. 463–467, Feb 1982.
  48. J. A. Baglio, G. S. Calabrese, E. Kamieniecki, R. Kershaw, C. P. Kubiak, A. J. Ricco, A. Wold, M. S. Wrighton, and G. D. Zoski, “Characterization of n-type semiconducting tungsten disulfide photoanodes in aqueous and nonaqueous electrolyte solutions: Photo-oxidation of halides with high efficiency,” Journal of The Electrochemical Society, vol. 129, p. 1461, jul 1982.
  49. H. Ramirez, A. Camacho, and L. Lew Yan Voon, “Dc electric field effects on the electron dynamics in double rectangular quantum dots,” Brazilian Journal of Physics, vol. 36, pp. 869–873, 2006.
  50. H. Y. Ramirez, A. S. Camacho, and L. C. L. Y. Voon, “Influence of shape and electric field on electron relaxation and coherent response in quantum-dot molecules,” Journal of Physics: Condensed Matter, vol. 19, p. 346216, jul 2007.
  51. A. H. Rodríguez and H. Y. Ramírez, “Analytical calculation of eigen-energies for lens-shaped quantum dot with finite barriers,” The European Physical Journal B, vol. 66, pp. 235–238, Nov 2008.
  52. T. A. Welsch and M. F. Doty, “Pbs/cds core/shell quantum dots designed to enable efficient photon upconversion for solar energy applications,” ACS Applied Optical Materials, vol. 2, pp. 2184–2195, Oct 2024.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube