Bifurcation of double eigenvalues for Aharonov-Bohm operators with a moving pole (2410.23917v2)
Abstract: We study double eigenvalues of Aharonov-Bohm operators with Dirichlet boundary conditions in planar domains containing the origin. We focus on the behavior of double eigenvalues when the potential's circulation is a fixed half-integer number and the operator's pole is moving on straight lines in a neighborhood of the origin. We prove that bifurcation occurs if the pole is moving along straight lines in a certain number of cones with positive measure. More precise information is given for symmetric domains; in particular, in the special case of the disk, any eigenvalue is double if the pole is located at the centre, but there exists a whole neighborhood where it bifurcates into two distinct branches.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.