Papers
Topics
Authors
Recent
2000 character limit reached

Acceleration-induced transport of quantum vortices in joined atomtronic circuits (2410.23818v2)

Published 31 Oct 2024 in cond-mat.quant-gas and quant-ph

Abstract: Persistent currents--inviscid quantized flow around an atomic circuit--are a crucial building block of atomtronic devices. We investigate how acceleration influences the transfer of persistent currents between two density-connected, ring-shaped atomic Bose-Einstein condensates, joined by a tunable weak link that controls system topology. We find that the acceleration of this system modifies both the density and phase dynamics between the rings, leading to a bias in the periodic vortex oscillations studied in T. Bland et al., Phys. Rev. Research 4, 043171 (2022). Accounting for dissipation suppressing such vortex oscillations, the acceleration facilitates a unilateral vortex transfer to the leading ring. We analyze how this transfer depends on the weak-link amplitude, the initial persistent current configuration, and the acceleration strength and direction. Characterization of the sensitivity to these parameters paves the way for a new platform for acceleration measurements, for which we outline a proof-of-concept ultracold double-ring accelerometer.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. Focus on atomtronics-enabled quantum technologies, New Journal of Physics 19(2), 020201 (2017), 10.1088/1367-2630/aa5a6d.
  2. Roadmap on atomtronics: State of the art and perspective, AVS Quantum Science 3(3) (2021), 10.1116/5.0026178.
  3. Colloquium: Atomtronic circuits: From many-body physics to quantum technologies, Reviews of Modern Physics 94(4), 041001 (2022), 10.1103/RevModPhys.94.041001.
  4. S. S. Szigeti, O. Hosten and S. A. Haine, Improving cold-atom sensors with quantum entanglement: Prospects and challenges, Applied Physics Letters 118(14) (2021), 10.1063/5.0050235.
  5. Technology roadmap for cold-atoms based quantum inertial sensor in space, AVS Quantum Science 5(1) (2023), 10.1116/5.0098119.
  6. C. Monroe, Quantum information processing with atoms and photons, Nature 416(6877), 238 (2002), 10.1038/416238a.
  7. M. Modugno, C. Tozzo and F. Dalfovo, Detecting phonons and persistent currents in toroidal bose-einstein condensates by means of pattern formation, Phys. Rev. A 74, 061601 (2006), 10.1103/PhysRevA.74.061601.
  8. Observation of persistent flow of a bose-einstein condensate in a toroidal trap, Phys. Rev. Lett. 99, 260401 (2007), 10.1103/PhysRevLett.99.260401.
  9. Vortex-induced phase-slip dissipation in a toroidal bose-einstein condensate flowing through a barrier, Phys. Rev. A 80, 021601 (2009), 10.1103/PhysRevA.80.021601.
  10. Current-phase relation of a bose-einstein condensate flowing through a weak link, Phys. Rev. A 81, 033613 (2010), 10.1103/PhysRevA.81.033613.
  11. Superflow in a toroidal bose-einstein condensate: An atom circuit with a tunable weak link, Phys. Rev. Lett. 106, 130401 (2011), 10.1103/PhysRevLett.106.130401.
  12. Quantized supercurrent decay in an annular bose-einstein condensate, Phys. Rev. A 86, 013629 (2012), 10.1103/PhysRevA.86.013629.
  13. Experimental realization of josephson junctions for an atom squid, Phys. Rev. Lett. 111, 205301 (2013), 10.1103/PhysRevLett.111.205301.
  14. Persistent currents in spinor condensates, Phys. Rev. Lett. 110(2), 025301 (2013), 10.1103/PhysRevLett.110.025301.
  15. Stability of persistent currents in spinor bose-einstein condensates, Phys. Rev. A 88(5), 051602 (2013), 10.1103/PhysRevA.88.051602.
  16. Quench-induced supercurrents in an annular bose gas, Phys. Rev. Lett. 113(13), 135302 (2014), 10.1103/PhysRevLett.113.135302.
  17. Relaxation dynamics in the merging of n independent condensates, Phys. Rev. Lett. 119(19), 190403 (2017), 10.1103/PhysRevLett.119.190403.
  18. C. Ryu, E. C. Samson and M. G. Boshier, Quantum interference of currents in an atomtronic SQUID, Nature Communications 11, 3338 (2020), 10.1038/s41467-020-17185-6.
  19. Imprinting persistent currents in tunable fermionic rings, Physical Review X 12(4), 041037 (2022), 10.1103/PhysRevX.12.041037.
  20. Persistent currents in ultracold gases, arXiv preprint arXiv:2410.17318 (2024), 10.48550/arXiv.2410.17318.
  21. G. Pelegrí, J. Mompart and V. Ahufinger, Quantum sensing using imbalanced counter-rotating bose–einstein condensate modes, New Journal of Physics 20(10), 103001 (2018), 10.1088/1367-2630/aae107.
  22. Quantum interference of currents in an atomtronic squid, Nature communications 11(1), 3338 (2020), 10.1038/s41467-020-17185-6.
  23. Enhancing sensitivity to rotations with quantum solitonic currents, SciPost Physics 12(4), 138 (2022), 10.21468/SciPostPhys.12.4.138.
  24. J. F. Clauser, Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry, Physica B+ C 151(1-2), 262 (1988), 10.1016/0378-4363(88)90176-3.
  25. Mobile quantum gravity sensor with unprecedented stability, In Journal of physics: conference series, vol. 723, p. 012050. IOP Publishing, 10.1088/1742-6596/723/1/012050 (2016).
  26. Simultaneous precision gravimetry and magnetic gradiometry with a bose-einstein condensate: A high precision, quantum sensor, Phys. Rev. Lett. 117(13), 138501 (2016), 10.1103/PhysRevLett.117.138501.
  27. Gravity measurements below 10- 9 g with a transportable absolute quantum gravimeter, Scientific reports 8(1), 12300 (2018), 10.1038/s41598-018-30608-1.
  28. Absolute marine gravimetry with matter-wave interferometry, Nature communications 9(1), 627 (2018), 10.1038/s41467-018-03040-2.
  29. Absolute airborne gravimetry with a cold atom sensor, Journal of Geodesy 94, 1 (2020), 10.1007/s00190-020-01350-2.
  30. Tracking the vector acceleration with a hybrid quantum accelerometer triad, Science Advances 8(45), eadd3854 (2022), 10.1126/sciadv.add3854.
  31. Taking atom interferometric quantum sensors from the laboratory to real-world applications, Nature Reviews Physics 1(12), 731 (2019), 10.1038/s42254-019-0117-4.
  32. Persistent current oscillations in a double-ring quantum gas, Physical Review Research 4(4) (2022), 10.1103/physrevresearch.4.043171.
  33. Persistent current formation in double-ring geometries, Journal of Physics B: Atomic, Molecular and Optical Physics 53(11), 115301 (2020), 10.1088/1361-6455/ab81e9.
  34. Driving phase slips in a superfluid atom circuit with a rotating weak link, Phys. Rev. Lett. 110, 025302 (2013), 10.1103/PhysRevLett.110.025302.
  35. B. Jackson, J. McCann and C. Adams, Vortex line and ring dynamics in trapped bose-einstein condensates, Phys. Rev. A 61(1), 013604 (1999), 10.1103/PhysRevA.61.013604.
  36. N. P. Proukakis and B. Jackson, Finite-temperature models of bose–einstein condensation, Journal of Physics B: Atomic, Molecular and Optical Physics 41(20), 203002 (2008), 10.1088/0953-4075/41/20/203002.
  37. Dynamics and statistical mechanics of ultra-cold bose gases using c-field techniques, Advances in Physics 57(5), 363 (2008), 10.1080/00018730802564254.
  38. A. Griffin, T. Nikuni and E. Zaremba, Bose-condensed gases at finite temperatures, Cambridge University Press (2009).
  39. N. G. Berloff, M. Brachet and N. P. Proukakis, Modeling quantum fluid dynamics at nonzero temperatures, Proceedings of the National Academy of Sciences 111(supplement_1), 4675 (2014), 10.1073/pnas.1312549111.
  40. L. Pitaevskii, Phenomenological theory of superfluidity near the λ𝜆\lambdaitalic_λ point, Sov. Phys.—JETP 8, 282 (1959).
  41. M. Tsubota, K. Kasamatsu and M. Ueda, Vortex lattice formation in a rotating bose-einstein condensate, Phys. Rev. A 65(2), 023603 (2002), 10.1103/PhysRevA.65.023603.
  42. S. Choi, S. Morgan and K. Burnett, Phenomenological damping in trapped atomic bose-einstein condensates, Phys. Rev. A 57(5), 4057 (1998), 10.1103/PhysRevA.57.4057.
  43. Parametric driving of dark solitons in atomic bose-einstein condensates, Phys. Rev. Lett. 93, 130408 (2004), 10.1103/PhysRevLett.93.130408.
  44. A. Rançon and K. Levin, Equilibrating dynamics in quenched bose gases: Characterizing multiple time regimes, Phys. Rev. A 90(2) (2014), 10.1103/physreva.90.021602.
  45. A. S. Bradley, C. W. Gardiner and M. J. Davis, Bose-einstein condensation from a rotating thermal cloud: Vortex nucleation and lattice formation, Phys. Rev. A 77, 033616 (2008), 10.1103/PhysRevA.77.033616.
  46. Spontaneous vortices in the formation of bose–einstein condensates, Nature 455(7215), 948 (2008), 10.1038/nature07334.
  47. The stochastic Gross-Pitaevskii equation and some applications, Laser Physics 19(4), 558 (2009), 10.1134/s1054660x09040057.
  48. Matter-wave dark solitons: Stochastic versus analytical results, Phys. Rev. Lett. 104, 174101 (2010), 10.1103/PhysRevLett.104.174101.
  49. Fluctuating and dissipative dynamics of dark solitons in quasicondensates, Phys. Rev. A 84, 043640 (2011), 10.1103/PhysRevA.84.043640.
  50. Winding up superfluid in a torus via bose einstein condensation, Scientific reports 2(1), 352 (2012), 10.1038/srep00352.
  51. A rapidly expanding bose-einstein condensate: an expanding universe in the lab, Physical Review X 8(2), 021021 (2018), 10.1103/PhysRevX.8.021021.
  52. Superflow decay in a toroidal bose gas: The effect of quantum and thermal fluctuations, SciPost Physics 11(4), 080 (2021), 10.21468/SciPostPhys.11.4.080.
  53. K. Kasamatsu, M. Tsubota and M. Ueda, Nonlinear dynamics of vortex lattice formation in a rotating bose-einstein condensate, Phys. Rev. A 67(3), 033610 (2003), 10.1103/PhysRevA.67.033610.
  54. Glitches in rotating supersolids, Phys. Rev. Lett. 131(22), 223401 (2023), 10.1103/PhysRevLett.131.223401.
  55. Minimally destructive, doppler measurement of a quantized flow in a ring-shaped bose–einstein condensate, New Journal of Physics 18(2), 025001 (2016), 10.1088/1367-2630/18/2/025001.
  56. Monitoring currents in cold-atom circuits, Phys. Rev. A 100(1), 013621 (2019), 10.1103/PhysRevA.100.013621.
  57. Persistent-current formation in a high-temperature bose-einstein condensate: An experimental test for classical-field theory, Phys. Rev. A 88, 063620 (2013), 10.1103/PhysRevA.88.063620.
  58. Dynamical equilibration across a quenched phase transition in a trapped quantum gas, Communications Physics 1(1), 1 (2018), 10.1038/s42005-018-0023-6.
  59. Collisionless sound in a uniform two-dimensional Bose gas, Phys. Rev. Lett. 121, 145302 (2018), 10.1103/PhysRevLett.121.145302.
  60. Superflow decay in a toroidal Bose gas: The effect of quantum and thermal fluctuations, SciPost Phys. 11, 080 (2021), 10.21468/SciPostPhys.11.4.080.
  61. Optimizing persistent currents in a ring-shaped bose-einstein condensate using machine learning, Phys. Rev. A 108(6), 063306 (2023), 10.1103/PhysRevA.108.063306.
  62. Hysteresis in a quantized superfluid ‘atomtronic’ circuit, Nature 506(7487), 200–203 (2014), 10.1038/nature12958.
  63. Probing the circulation of ring-shaped bose-einstein condensates, Phys. Rev. A 88(5), 053615 (2013), 10.1103/PhysRevA.88.053615.
  64. S. Takagi, Quantum Dynamics and Non-Inertial Frames of Reference. I: Generality, Progress of Theoretical Physics 85(3), 463 (1991), 10.1143/ptp/85.3.463.
  65. L. Wen, H. Xiong and B. Wu, Hidden vortices in a bose-einstein condensate in a rotating double-well potential, Phys. Rev. A 82(5) (2010), 10.1103/physreva.82.053627.
  66. Vortices in a toroidal bose-einstein condensate with a rotating weak link, Phys. Rev. A 91(3) (2015), 10.1103/physreva.91.033607.
  67. Q.-L. Zhu and J. An, Surface excitations, shape deformation, and the long-time behavior in a stirred bose–einstein condensate, Condensed Matter 3(4), 41 (2018), 10.3390/condmat3040041.
  68. Stochastic phase slips in toroidal bose-einstein condensates, Phys. Rev. A 94(6) (2016), 10.1103/physreva.94.063642.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.