Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

One-dimension Periodic Potentials in Schrödinger Equation Solved by the Finite Difference Method (2410.23673v1)

Published 31 Oct 2024 in quant-ph

Abstract: The one-dimensional Kronig-Penney potential in the Schr\"{o}dinger equation, a standard periodic potential in quantum mechanics textbooks known for generating band structures, is solved by using the finite difference method with periodic boundary conditions. This method significantly improves the eigenvalue accuracy compared to existing approaches such as the filter method. The effects of the width and height of the Kronig-Penney potential on the eigenvalues and wave functions are then analyzed. As the potential height increases, the variation of eigenvalues with the wave vector slows down. Additionally, for higher-order band structures, the magnitude of the eigenvalue significantly decreases with increasing potential width. Finally, the Dirac comb potential, a periodic $\delta$ potential, is examined using the present framework. This potential corresponds to the Kronig-Penney potential's width and height approaching zero and infinity, respectively. The numerical results obtained by the finite difference method for the Dirac comb potential are also perfectly consistent with the analytical solution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.